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Abstract: 
 
Simulation of accurate models for experimental systems is vital to determining future 
research and validating existing research. I will implement a model for a system of 
coupled nonlinear time-delayed feedback loops. The model for each independent loop 
will be a state-space representation of the loop in Kouomuo [1] and will be tested against 
published results for identical systems. Coupling schemes will be initially tested on well 
known and previously explored systems such as the Lorenz model [2]. The final 
implementation will be tested against published experimental data for such a system 
[3,4]. This will be then used to predict synchronization behavior for previously 
unexplored system parameters τ and φ as it relates to the coupling strength. Time 
permitting, the time required to achieve synchronization and its dependence on system 
parameters will be explored.  



Background 
 
For highly productive experimental research to be conducted it is important to explore 
reasonable paths of investigation. With the breadth of available topics and directions 
determining the most fruitful paths can be difficult. One solution to this is effective 
modeling and prediction of experimental behavior through computer simulations. One 
current field of research is the synchronization of nonlinear systems.  
 Of current interest are nonlinear systems that involve a time-delayed feedback. 
One such system explored in detail by Kouomuo [1] is comprised of a laser, Mach-
Zehnder inferometer, filtering, delay and amplification.  
(Diagram) 

Through basic mathematical relationships for each of these components one can 
form a model for the evolution of the system in terms of a time-delayed integro-
differential equation as defined in Kouomuo: 
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 Here x(t) is a dimensionless variable with parameters of the normalized feedback 
gain β, the normalized bias offset φ, the high cut-off filter time constant τ and the low cut-
off filter time constant θ. 

The generally established method for solving these equations would be 
traditional, numerical methods such as RK4. However, one can examine the initial 
situation and formulate these equations using a completely different approach (presented 
below). Having established a basic nonlinear system, we can now examine more 
complicated behavior.  

It has been observed both in natural systems and mathematical models that two 
nonlinear systems can achieve a synchronous state when coupled in an appropriate 
manner. Understanding such systems may lead to better communication techniques, 
advanced medical procedures and a significant improvement in understanding certain 
biological systems.  

With either formulation it is fairly easy to cast this in the form of many published 
pieces of work about coupling systems of nonlinear equations. What becomes interesting 
is examining the behavior of such coupled systems. In published work on the Lorenz 
system it has been demonstrated that two such coupled systems can be made to 
synchronize. This seems counter-intuitive to the concept of nonlinear (chaotic) systems 
and so has sparked a variety of research. Of specific relevance to this project is published 
experimental work which has demonstrated that given the correct setup it is possible to 
achieve synchronization between two Mach-Zehnder loops.  
   
Derivation of Alternative Model 
 The approach taken by Kouomuo was to model the filters using single-pole low-
pass and high-pass filters. An alternative approach is to formulate them in state-space. 
Then the filtering would look like: 
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 Here x(t) represents the input to a filter, y(t) is the output from the filter and A, B, 
C and D are constant matrices related to the filter used. Furthermore this can be easily 
converted to a discrete map equation. This is highly appropriate if one is considering a 
discrete-time filter such as might be implemented on a digital signal processing board. 
Since the current experimental setup related to this project has chosen to implement the 
system in this manner we will use the discrete versions as follows[5]: 
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 Now we must include the concept of feedback. The simplest approach would be 
just a direct feedback where x[n]=y[n]. This however does not actually allow any 
dynamics besides the filter response to occur. Therefore we also include some function 
applied to the output of the filter, thus you could imagine something like: 
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 Where we have included the fact that we are using time-delayed feedback as 
represented by the argument [n-k]. This gives rise to a state-space representation that 
looks like: 
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By carefully choosing our state-space to be the canonical form derived from the z-
transform of the discrete time filters we are interested in modeling, we can rewrite the top 
equation in terms of only the state-vector u, and generate our output at a later iteration via 
the simplified second equation. This gives us an iterative map in the following form: 
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 The final step in realizing what will be implemented is to actually introduce the 
function f(y[n]) from the system. In our case it is the exact same nonlinearity introduced 
in the Kouomuo paper, since it represented the modification and feedback of the output 
of the filter, just as our function does. So, the final equation we will model is: 
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 The main drawback to this approach for modeling the system is it requires 
knowledge of the matrices A, B, C and D related to the filter. There exists code to 
generate these matrices for some standard filter types and orders in Matlab, but any given 
high or low pass filter will not necessarily well conform to these standards. While it’s 
possible to buy high-caliber filters designed to specific functions, these are very 
expensive. An alternative approach is to implement digital filters, as mentioned before 
this is the approach taken in our current experiments. This allows the actual 
implementation of filters that precisely match the matrices generated (or to design a filter 
then generate the matrices that match it exactly). There exists some concern for the 
numerical stability of the matrices, but the code in Matlab asserts that these matrices are 
the most stable of available methods for generating filtering characteristics. Therefore we 
will largely ignore any concern for stability from this issue. A different issue could arise 
in the discretization of the continuous time system to a discrete time system, but since the 
discretization is already inherent in the system we seek to model it can be ignored on the 
surface. There may be some issue from the combination of both digital and analog system 
components, which will be addressed if there is time since it is largely hidden in the 
established and tested hardware design of the digital signal processing board.  



 The second concern is developing an effective method for coupling two of these 
systems. A bi-directional coupling of the Lorenz system might look like: 
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 This is considered diffusive coupling in the literature. This same technique can be 
applied to our state-space representation. If we take a step back and consider where we 
have both an input and output term (x[n] and y[n]), it would make logical sense to couple 
in the input terms. That is we will introduce coupling in the x[n] term. However, recall 
that we’ve replaced the x[n] term with our f(y[n-k]) term, so, our coupling would then 
look like: 
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Now we perform the same simplifications that we did earlier, as well as multiplying out 
the coupling term and recombining them giving us a simplified pair of equations: 
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This is the final set of equations we will implement to actually model a coupled set of 
Mach-Zehnder loops. 
 
Implementation 
 

Because the majority of published materials for this class of problems contain 
graphical representations and a primary experimental observation method is the display 
of time traces, it will be important to facilitate comparisons between simulation runs and 
this visual data. This suggests using a language or environment that incorporates an easily 
utilized graphical presentation component. Furthermore since I have chosen to implement 
a method dependant on matrix filtering constants, a language which has such code readily 
available or integrated for calculation of these coefficients would be preferred. To fulfill 
these requirements my primary implementation will be performed in Matlab with 
integrated C routines as needed for efficient calculations.  
 The largest predicted concern will be in comparison between published 
experimental results due to the quantization inherent in measurements. This quantization 
is not existent in the mathematical model without being explicitly included. Since there 
does exist characteristics that are dominant on scales significantly above the quantization 
error, for validation of the code I will be able to ignore this. Since we seek to have highly 
accurate comparison to experimental results however, should there prove time later in the 
project I will introduce quantization into the model to reflect this expected behavior.  
 
Validation 
 



The simulation develop will take part in three stages, each independently 
verifiable. The first will involve implementing a single loop model as developed above. 
This will be verified against published work by Kouomuo et al. [1] on such systems. 
Specifically I will look for characteristic behavior of the system at unique parameter 
settings. Four such characteristic curves are displayed below, with their corresponding 
system parameters.  

 
 

The second stage will be a separate implementation of a system of couple Lorenz 
models [2]. Again, characteristic behavior will be looked for. Using commonly studied 
parameters of the system (σ=10, r1=28.8, r2=28, b=8/3) I should be able to demonstrate 
identical synchronization.  
 The final stage of implementation will be a combination of the previously 
mentioned models. To verify this I will compare against two sets of literature, Argyris et. 
al. [3] has published work where a set of oscillators coupled in an open loop 
configuration (γ=0 for system 1 and  γ= 1 for system 2) synchronize and exhibit unique 
behaviors. Further, in a slightly more complicated case Piel et al. have demonstrated 
synchronization under very specific circumstances which involve bi-directional 
communication [4]. I will demonstrate synchronization under these specific conditions of 
γ=0.5, and conversely the lack of synchronization when these conditions are not met.  
 
Results of Validation 
 



Single Mach-Zehnder Non-Linear Time-Delayed Optical Feedback Loop 
 The first step is to verify against the analytical results published by Kouomou. He 
identifies the control parameter )2sin( ϕβγ =k , and through analysis of the continuous 
time equation derives solutions for bifurcation points, and the frequencies that should 
appear at these bifurcations. We can calculate bifurcations according to: 
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calculations for k=0 are slightly different giving the solutions: 
2/10 Rεγ −−=  and R/0 εω =  

It is worth noting that these are only approximate solutions, so exact agreement to 
experimental or simulated results may not occur. 
 We can proceed to calculate the first few bifurcation points, as well as simulate 
the single loop system to compare. Because the bifurcations using a positive control 
parameter do not exhibit extremely unusual behavior it is easier to observe them, so we 
do not present the results for negative β though those results also show some 
correspondence. Below is a graph that includes the first four positive bifurcation points, 
plotted according to both their expected frequency and β value.  

 
Marked on the graph are two successes and two failures of the simulations to match the 
analytical results. For higher values of β we see similar results to the 3rd and 4th points 
where the correct frequency is predicted but generally to the right (a higher β value) than 
the analytical results predict.  
 However, examining approximate analytical results do not always provide the 
information we seek. Since this code aims to simulate a physical system it is equally 
important to compare the simulation to experimental results. The simplest, most easily 



understood comparison is between time series that are generated in both the simulation 
and experiment.  

 
Here we can see that the simulated time series exhibit nearly identical behavior as the 
experimental data. The differences are a slight amplitude difference (simulation is ~80% 
of experimental) and a slight frequency mismatch. The amplitude difference is likely 
caused by an incorrect scaling factor in converting the experimental data to displayable 
data; however, the frequency mismatch is of a minor concern, and potentially deserves 
further examination. The likely cause of it though is additional filtering occurring in the 
physical system (from various electronic parts such as the digital signal processing board 
and photo-detector) that is unaccounted for in the model (we are only modeling the 
directly implemented filtering). With these slight mismatches accounted for though the 
model does give very good agreement for most simulations. We can see this by looking at 
a very large spectrum of β values and taking the histogram of the time series. This 
provides what might be considered a ‘value’ bifurcation diagram: 



 
Here there is a clear discrepancy at β~3, which is still under investigation between 
simulation and experiment. Possibilities are stray behavior in the experiment, histrionic 
behavior, or a significant failure of the model. Though, given its ability to accurately 
reproduce a significant portion of the experimental data, I feel that the simulation can still 
be qualified as an over-all success. Also indicated on this diagram are the predicted 
β values for bifurcations.   
 
Synchronization in Coupled Lorenz Equations 
 The second stage of validation consisted of implementing the coupled Lorenz 
equations used as a model-basis for the coupling of the Mach-Zehnder equations (see 
above). The equations can be integrated using basic MATLAB ode solvers. When we 
integrate these couple equations we find time series similar to the following: 
 

 
 



The second plot shows the L2 norm of X, Y, and Z for the time trace shown. We can see 
that with the simple coupling outlined in the preceding sections it is possible to achieve 
isochronal synchronization. This of course has been demonstrated many times, but does 
encourage us that a similar implementation of the equations for Mach-Zehnder loops 
could work as well.  
 
Synchronization of Couple Nonlinear Time-Delayed Feedback loops 
 We previously developed equations for coupled Mach-Zehnder loops, and now 
we seek to simulate them, and attempt to find regimes under which synchronization can 
occur. Previously published in literature are results for synchronization of a master loop 
to an open loop as well as at the specific γ value of .5 (50%) [3][4]. To replicate these 
experiments the code has been implemented to allow individual specification of  γ for 
each system, and for each interaction between systems. Specifically for reference we re-
define the equations in the following way: 
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One can see then that the initially defined equations are just a special sub-set of these 
were: 122211 1 γγγ −== . Argysis has demonstrated (and used) synchronization under a 
very specific regime of these were γ11 =γ21=1 and γ12=γ22=0. That is, open-loop, 
unidirectional coupling. He explores this under a variety of coupling delays and 
conditions which I have checked against, but for the simplest case of the delay between 
systems being zero we do not need to dramatically change the above equations (merely 
impose those conditions) and we generate time series that look very similar in behavior to 
the coupled Lorenz equations. 

 



Here we can see that the two systems synchronize identically soon after the coupling has 
been turned on. It is also worth noting that rather than finding a mutual synchronization 
state, the second system actually synchronizes to the first one since the first system is 
actually a master/driver system and the second a slave.  
 We can also replicate Piel’s experiments of mutually coupled systems 
synchronizing with a coupling of 50%, however, rather than show a number of plots 
related to this we can actually go ahead and take the simulations a step further and 
explore whether synchronization occurs for a variety of coupling strengths: 

 
Here we see plotted on the y-axis the normalized RMS difference between the last 104 
entries of a time series for two mutually coupled systems. The x-axis indicates for what 
coupling strength this RMS difference occurred. We can see on this plot that in-fact 
identical synchronization occurs not only at 50% coupling, but at a wider variety of 
coupling strengths. To be certain that this is a real phenomena and not just artifacts of 
simulation we finally compare our synchronization results to experimental traces of the 
same thing which were included in the previous graph. 

There we see that for two experimental systems at 50% identical synchronization 
does occur, but only nearly identical synchronization occurs at other locations. However 
the locations of drastic change from semi-synchronized behavior and completely 
unsynchronized behavior do match up. This suggests that further expansion of the code 
and exploration into noise, quantization, and parameter mismatching will be vital to bring 
the simulation into greater agreement with the experiments.  
 
Use of Code 



Once validation has occurred, this code can be utilized to predict new and interesting 
behavior. I will perform simulations where previously unexplored system parameters are 
examined. Specifically the work will generate empirical conditions for synchronization 
based on variations in time delay ( k ) and optical biasing  ( φ ) compared to the strength 
of system coupling ( γ ).  
 
Expansion of the Code 
 In light of the experimental data it has become important to expand the code in a 
number of ways. The first is to allow individual specification of parameters for both 
systems. In terms of the equations, we’ve essentially introduced subscripts onto many of 
the important system parameters and included independent variables in the code to 
accommodate these. Specifically in addition to the expansion introduced in the validation 
section we now define our system in the following way: 
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A second improvement that was required in the code was the ability to do 

interpolation between points in the history. This is important in investigating the error 
between simulation and experiment because it turns out that while the DSP board 
implements discrete time filters there is still an analog component of propagation both 
through the board and through the system which can introduce a non-integer delay. To 
account for this we introduce an intermediate step on each iteration of calculating the 
‘real’ values of u[n-k]. This had provided promising results which will be discussed 
below. 
 
Investigation of Simulation vs. Experiment 
 Investigating the difference between the experimental and simulation results is 
important for understanding whether there is an error in the model, mistakes in the 
experiment, or just something truly interesting going on. To this extent beyond analysis 
of basic synchronization regimes is has become important to investigate potential 
mismatches in the system parameters. Most of the analysis that finds synchronization is 
based on the concept that two non-linear systems can be matched exactly. This however 
is not the case for real systems. Once the code was expanded as above it became possible 
to investigate what a small mismatch in parameters might introduce in terms of 
synchronization error. We see below the preliminary results of these investigations. 



 
 
Further Work 
 There are a few directions in which work will continue with this project. The first 
is to fully explore how mismatched parameters will affect synchronization. This is vital to 
understanding how the experiment can actually be improved. However to achieve this in 
a reasonable time period a second direction must be explored first. While an individual 
simulation with the code takes a very minimal amount of time (<1sec) when we begin 
sweeping large amounts of parameter space each individual simulation quickly builds up 
(for example 100-1000 γ values for 2-4 β values for multiple k values etc.), thus making a 
thorough investigation take hours or even days to explore one phenomena. In order to 
alleviate this problem I will be porting my code from MATLAB to C/C++ in order to 
more easily parallize the execution. There are two issues that require changing for this. 
The first will be generating and then inputting filter parameters into a C code. For this I 
will generate the values in MATLAB and just directly input them for the code. The 
second is that our current algorithm involves matrix multiplication, which while possible 
in C requires including other libraries or extensive for loops. Luckily however, for this 
specific case of a system we are dealing with very small order filters, which therefore 
generate very small order matrices. This will allow direct unrolling of the matrix 
multiplications into just 4 lines of multiplies, which should be significantly more efficient 
than making calls to another C library.  
 
Milestones: 
Implementation & Verification of individual simulations 



Implementation & Verification of final, combined simulation 
Generation of new results 
Expansion & further development of code 
 
Project Schedule 
Goal/Stage        Completion Date 
Implement and Validate Single Loop code    Nov. 1st 
Implement and Validate Coupled Lorenz code   1st week Nov. 
Implement and validate coupled MZ code    Dec 1st  
Mid-Year Progress Report      1st Week Dec. 
Generate Conditions for Time delay     Jan. 1st 
Generate Conditions for Optical Biasing    Jan. 1st 

Introduce Quantization and Noise in model    April 1st 
Draft Final Report and Presentation     2nd week April 
Further Expansion of Code      ???? 
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